Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andrea Johnston, ${ }^{\text {a }}$ Alastair J. Florence ${ }^{\mathbf{a} *}$ and Alan R. Kennedy ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and bWestCHEM, Department of Pure \& Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland

Correspondence e-mail:
alastair.florence@strath.ac.uk

Key indicators

Single-crystal X-ray study
$T=123 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.034$
$w R$ factor $=0.084$
Data-to-parameter ratio $=23.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Hydrochlorothiazide-aniline (1/1)

Hydrochlorothiazide forms a 1:1 solvate with aniline, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$. The crystal structure contains a hydrogen-bonding network comprising two $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and three $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ contacts.

Comment

Hydrochlorothiazide (HCT) is a thiazide diuretic which is known to crystallize in at least one non-solvated form (Dupont \& Dideberg, 1972). The aniline solvate, (I), was produced during an automated parallel crystallization polymorph screen on HCT. The sample was identified as a novel form using multisample X-ray powder diffraction analysis of all recrystallized samples (Florence et al., 2003). Subsequent manual recrystallization from a saturated 1:1 acetone-aniline solution by slow evaporation at 278 K yielded samples of (I) suitable for single-crystal X-ray analysis (Fig. 1).

(I)

In (I), the $\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 7$ six-membered ring in HCT adopts a non-planar conformation, with atoms S1 and N 1 having deviations of 0.271 (1) and 0.843 (1) \AA, respectively, from the least-squares plane through atoms $\mathrm{C} 2-\mathrm{C} 7$. The sulfonamide side chain adopts a torsion angle N3-S2-C5C4 of $69.05(12)^{\circ}$, such that atom O4 eclipses H6 and atoms O3

Figure 1
Plot of the asymmetric unit contents with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
\qquad

Figure 2
A packing diagram of (I). Dashed lines indicate hydrogen bonds and unique contacts are labelled as follows: $1=\mathrm{N} 3 \cdots \mathrm{O} 2[2.9725(16) \AA$, O2 in the molecule at $(1-x, 1-y, 2-z)] ; 2=\mathrm{N} 3 \cdots \mathrm{O} 1[2.9390(15) \AA, \mathrm{O} 1$ in the molecule at $\left.\left(\frac{1}{2}+x, \frac{1}{2}-y,-\frac{1}{2}+z\right)\right] ; 3=\mathrm{N} 1 \cdots \mathrm{~N} 4[2.9652(17) \mathrm{A}] ; 4=$ $\mathrm{N} 4 \cdots \mathrm{~N} 3[3.3944(18) \AA$, in the molecule at $(-1+x, y, z)] ; 5=\mathrm{N} 4 \cdots \mathrm{O} 4$ $[3.1000$ (17) A. O4 in the molecule at $(1-x, 1-y, 2-z)] ; 6=\mathrm{C} 1 \cdots \mathrm{O} 3$ $[3.2535(18) \AA$ A, O3 in the molecule at $(1-x,-y, 2-z)] ; 7=\mathrm{C} 1 \cdots \mathrm{O} 3$ [3.2852 (17) \AA, O3 in the molecule at $(-1+x, y, z)]$. Contacts calculated and illustrated using PLATON (Spek, 2003; program version 280604)

Figure 3
The $R_{2}^{2}(16)$ (left) and $R_{4}^{4}(12)$ hydrogen-bond motifs in the crystal structure of (I).
and N3 are staggered with respect to Cl1. In the non-solvated structure (Dupont \& Dideberg, 1972), this group is rotated by approximately 130° compared to (I) such that the amine group lies on the opposite side of the benzothiadiazine moiety. The aniline molecule is planar, the greatest deviation of any non-H atom from the least-squares plane through $\mathrm{C} 8-\mathrm{C} 13 / \mathrm{N} 4$ being 0.013 (1) Å for C8.

The crystal structure is stabilized by a network of hydrogen bonds interconnecting (a) HCT molecules (Fig. 2, contacts 1 and 2) and (b) HCT and solvent molecules (contacts 3, 4 and 5). Two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts also exist between HCT molecules (contacts 6 and 7). Contact $1(\mathrm{~N} 3-\mathrm{H} 3 N \cdots \mathrm{O} 2)$ forms a centrosymmetric $R_{2}^{2}(16)$ motif between molecules of HCT, whilst contacts 4 and $5(\mathrm{~N} 4-\mathrm{H} 5 \mathrm{~N} \cdots \mathrm{~N} 3$ and $\mathrm{N} 4-\mathrm{H} 6 \mathrm{~N} \cdots \mathrm{O} 4)$ combine to form an $R_{4}^{4}(12)$ motif between aniline and HCT (Fig. 3). Hydrophobic interactions between HCT and aniline

Figure 4
Hydrophobic interactions in (I), showing a C3-H3 \cdots centroid contact to the centroid of the benzene ring of aniline [C3 \cdots centroid $=3.618$ (2) \AA] (top) and a $\pi-\pi$ off-stacking interaction between HCT and aniline with a centroid-centroid distance of 3.6955 (8) \AA (bottom). Contacts are illustrated using dashed lines.
include a $\mathrm{C}-\mathrm{H} \cdots \pi$ contact and an offset face-to-face (off) $\pi-$ π approach (Fig. 4).

Experimental

A single-crystal sample of the title compound was recrystallized from a 1:1 acetone-aniline solution by slow evaporation at 278 K .

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$
$M_{r}=390.86$
Monoclinic, $P 2_{6} / n$
$a=9.7757$ (3) А
$b=10.5004$ (3) \AA
$c=15.6093$ (4) \AA
$\beta=91.692(2)^{\circ}$
$V=1601.58(8) \AA^{3}$
$Z=4$

$$
D_{x}=1.621 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 5824 reflections
$\theta=1.0-32.0^{\circ}$
$\mu=0.53 \mathrm{~mm}^{-1}$
$T=123$ (2) K
Prism, colourless
$0.38 \times 0.30 \times 0.18 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
ω and φ scans
Absorption correction: none
10766 measured reflections
5573 independent reflections
4379 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.027 \\
& \theta_{\max }=32.0^{\circ} \\
& h=-14 \rightarrow 14 \\
& k=-15 \rightarrow 15 \\
& l=-23 \rightarrow 23
\end{aligned}
$$

organic papers

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.036 P)^{2} \\
&+0.781 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.48 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.53 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$S=1.02$
5573 reflections
241 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{~N} 4$	$0.87(2)$	$2.10(2)$	$2.9652(17)$	$174(2)$
$\mathrm{N} 3-\mathrm{H} 3 N \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.85(2)$	$2.13(2)$	$2.9725(16)$	$169(2)$
$\mathrm{N} 3-\mathrm{H} 4 N \cdots 1^{\text {ii }}$	$0.90(2)$	$2.09(2)$	$2.9390(15)$	$157(2)$
$\mathrm{N} 4-\mathrm{H} 5 N \cdots \mathrm{~N}^{\text {iii }}$	$0.89(2)$	$2.52(2)$	$3.3944(18)$	$169(2)$
$\mathrm{N} 4-\mathrm{H} 6 N \cdots \mathrm{O} 4^{\mathrm{i}}$	$0.83(2)$	$2.28(2)$	$3.1000(17)$	$173(2)$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\text {iv }}$	0.99	2.37	$3.2535(18)$	148
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{O} 3^{\text {iii }}$	0.99	2.47	$3.2852(17)$	139
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 4$	0.95	2.38	$2.8101(16)$	107

Symmetry codes: (i) $-x+1,-y+1,-z+2$; (ii) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (iii) $x-1, y, z$; (iv) $-x+1,-y,-z+2$.

The N -bound H atoms were found in difference maps and refined freely $[\mathrm{N}-\mathrm{H}=0.77(2)-0.90(2) \AA]$. The remaining H atoms were
positioned geometrically at distances of $0.95(\mathrm{CH})$ and $0.99 \AA\left(\mathrm{CH}_{2}\right)$ from the parent C atoms; a riding model was used $\left[U_{\text {iso }}(\mathrm{H})=\right.$ $1.2 U_{\text {eq }}(\mathrm{C})$] during the refinement process.

Data collection: COLLECT (Hooft, 1988) and DENZO (Otwinowski \& Minor, 1997); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (URL: www.cposs.org.uk).

References

Dupont, L. \& Dideberg, O. (1972). Acta Cryst. B28, 2340-2347.
Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. \& David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.
Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

